UM5MEA02 – Traitement du signal et méthodes numériques (Signal processing and numerical methods)

Catherine Weisman

2025-07-04 15:29:55 +0200

Informations générales

Title (EN)	Signal processing and numerical methods
Titre (FR)	Traitement du signal et méthodes numériques
Nom du ou de la responsable de l'UE	Catherine Weisman
Nombre d'heures de cours / Amount of class hours	36
Volume h TP / Amount of practical work hours	24
ECTS	6
Semestre	Automne (S3)
Semester	Sept-Jan (S3)
Periode (pour les cours M2)	Sept-Nov
Quarter (for M2 classes)	P1 P1
Langue	Français/Anglais
Language	Français/Anglais
Code de l'UE	UM5MEA02

Informations pédagogiques

Contenu (FR)

Présentation pédagogique.

Cette unité d'enseignement s'articule autour de deux thèmes : le traitement du signal et les méthodes numériques pour l'acoustique.

Contenu de l'Unité d'Enseignement.

Traitement du signal Cet enseignement a été conçu pour s'adresser à des physiciens et des mécaniciens, et non, comme c'est parfois le cas dans cette discipline, comme un cours de mathématiques pures ou de techniques informatiques. Il est constitué de cours-TD et de séances de travaux pratiques. - Rappels fondamentaux : description spectrale d'un signal à temps continu, à temps discret, échantillonnage temporel et fréquentiel, les diverses transformées de Fourier. La transformée de Hilbert et les relations de Kramers-Kronig : utilisation en physique. - Systèmes numériques linéaires et invariants, synthèse de filtres numériques dans le cadre de l'analyse des signaux en laboratoire. - Analyse des signaux aléatoires : techniques de réduction du bruit, détection, estimation classique, estimation paramétrique. Méthodes numériques pour l'acoustique Les notions introduites en cours seront appréhendées lors de la séance TP par un programme Matlab à développer par l'étudiant. Introduction aux différences finies sur l'équation de transport Notions introduites : ordre des schémas, schéma implicite / explicite, stabilité, dispersion et dissipation numérique, quelques schémas standards. Application des différences finies à l'équation des ondes 2D Initiation à la méthode des éléments finis

Content (EN)

Signal Processing

This course is designed for physicists and mechanical engineers, rather than being a pure mathematics or computer science class, as is sometimes the case in this field. It consists of lectures with tutorials (TD) and practical sessions (labs). - Fundamental concepts: spectral description of continuous-time and discrete-time signals, temporal and frequency sampling, various Fourier transforms. The Hilbert transform and Kramers-Kronig relations: applications in physics. - Linear and time-invariant digital systems, synthesis of digital filters for laboratory signal analysis. - Analysis of random signals: noise reduction techniques, detection, classical estimation, parametric estimation.

Numerical Methods for Acoustics

The concepts introduced in lectures are explored during lab sessions through a Matlab program developed by the student. - Introduction to finite difference methods on the transport equation - Concepts covered: order of schemes, implicit/explicit schemes, stability, numerical dispersion and dissipation, some standard schemes. - Application of finite differences to the 2D wave equation - Introduction to the finite element method

Mots clés (FR)

- Traitement du signal
- Transformée de Fourier
- Systèmes numériques
- Différences finies
- Éléments finis

Keywords (EN)

- Signal processing
- Fourier transform
- Digital systems
- Finite differences
- Finite elements

Préréquis (FR)

Traitement du signal numérique (M1), Méthodes numériques (M1)

Acquis d'Apprentissage Visés

- Autonomie face à la résolution numérique d'un problème scientifique
- Pratique des principes de la programmation scientifique et du traitement des données.
- Compréhension des contraintes de l'échantillonnage
- Savoir calculer et interpréter un spectre. Savoir choisir un filtre. Savoir synthétiser un filtre
- Savoir implémenter des méthodes numériques et les apprécier en termes de stabilité, précision, convergence, ...
- Savoir présenter des méthodes et résultats numériques.

Learning outcomes

- Understand and apply fundamental signal processing principles in acoustics
- Analyze continuous and discrete signals using Fourier and Hilbert transforms
- Design and synthesize digital filters
- Apply numerical methods (finite differences, finite elements) to solve acoustic equations
- Develop Matlab programs to simulate acoustic phenomena

Bibliographie

- Signal Analysis (Papoulis)
- Méthodes et techniques de traitement du signal (Max et Lacoume, 2 tomes)
- Traitement des signaux et acquisition de données (F. Cottet)
- Leveque, Numerical methods for conservation laws, Birkhäuser Verlag, 1992
- Euvrard, Résolution numérique des équations aux dérivées partielles, Masson 1993
- Dhatt et Touzot, Une présentation de la méthode des éléments finis, Maloine 1984
- G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Springer, 2002

Version PDF